第五代通信和万物互联对微波毫米波集成电路的需求提出了全新的要求。自充电、低功耗电路复杂度和集成度空前提高,特征线宽在不断减小,发展全新的非破坏高分辨微波场近场成像技术对芯片的功能和失效分析至关重要,目前尚没有成熟的技术路线。南京邮电大学杜关祥教授带领的研究团队基于金刚石NV色心的固态量子体系作为传感单元,通过分析NV色心基态自旋在共振微波场中的量子态演化规律,采用全光学的方法,获得微波场分布的一种精密测量方法。该方法通过搭建光学成像系统进行一次成像来获得芯片整体的微波场分布,具有高效、对近场干扰小等优点,有望在芯片电磁兼容测试、微波芯片失效分析和天线近场分布成像等应用上提供一种全新的测量方案。和传统技术相比,最突出的特点是分辨率高,非侵入性最好,量子标定,而且胜任在复杂场景下的测量,比如高温高湿和高腐蚀应用场合。
团队简介
杜关祥博士是南京邮电大学通信与信息工程学院教授。他先后于兰州大学和中科院物理研究所获得理学学士和博士学位。他是日本学术振兴会特别研究员奖学金获得者,先后在日本东北大学、瑞士巴塞尔大学和德国马普生物物理化学研究所从事科研工作。2016年他以校长特聘教授受聘南京邮电大学通信与信息工程学院。他是北京市科技奖一等奖获得者,江苏特聘教授,南京邮电大学“鼎山学者”和江苏省第十三批“六大人才高峰”高层次人才,目前担任江苏省Peter Grünberg研究中心副主任。杜关祥博士团队致力于发展实用化量子精密测量技术,他面向芯片表面微波磁场测量要求,提出了扫描式和成像式两种测量新方法,研制了锥形光纤亚微米级金刚石NV色心探头和芯片表面微波磁场高分辨高速成像系统,实现了芯片表面微波磁场高分辨测量,对提高芯片设计和测试能力具有重要意义。
研究背景
近30年来,随着凝聚态物理和量子光学的发展,基于量子物理和基本物理常数的量子计量技术获得了长足的发展,相关成果彻底重塑了现代科技的基础 - 物理量的计量标准。比如,基于光钟时间的精确定义达到10-18的水平,相应的因为光速是一个常量(定义光速c = 299 792 458米/秒),对长度的定义达到了前所未有的精度。约瑟夫森常数[KJ=(2e)/h= 483597.8525(30)×109 Hz/V]则将电压的量子标准通过普适的物理常数KJ和时间(Hz)的定义联系。而电阻的量子化标准则定义为整数量子霍尔效应中的克里青常数[RK=h/e2= 25812.807557(18) Ω]。这些普适量子标准为电、磁和电磁波相关的物理量精密测量奠定基础,是现代科技的基石。比如,没有时间的准确计量,就没有现代通信网络和全球定位系统,时间的精准计量也是引力波发现的核心技术。
随着微波射频技术的不断发展,微波毫米波技术在5G通信、自动驾驶、军事航天、消费电子等方面因其高带宽、小型化、高集成度等优点而成为炙手可热的技术。毫米波近场成像技术在高分辨率目标识别以及手势检测互动等方面都有广阔的应用。对微波毫米波器件的表面电磁场近场分布进行探测并成像对于推广和应用微波毫米波技术有重要的意义。长期以来在微波射频领域,直接对微波毫米波表面的电磁场分布进行直接成像的方法还比较缺乏。
研究内容
2010年,瑞士巴塞尔大学的科学家首次基于激光冷却原子实现了对原子芯片(Atomic Chip)微波近场分布的非破坏测量。2012到2014年,杜关祥博士在该小组工作期间进一步将这一原理从装置复杂的冷原子体系推广至简单实用的热原子体系,并证实了这一技术实现高分辨微波场成像的可行性,获得了共面波导的微波场分布图像。该小组还就这一技术申请了美国专利,申请人Theodor W. Hänsch是2005年诺贝尔物理学奖得主,足见这一新技术的前瞻性和重要性。杜关祥博士在巴塞尔小组工作期间,还和罗德与施瓦兹公司(R&S)就该芯片在射频集成电路产品表征上的应用展开探讨。
这一技术基于量子二能级体系在共振微波场中的拉比振荡现象。量子二能级原子体系,在量子计算和量子精密测量中,也称量子比特。电子自旋,有向上和向下两种本征态,就是一个典型的二能级体系。碱金属原子具有类氢原子结构,最外层有一个自由电子,处于S基态的电子和原子核自旋耦合,形成超精细结构基态。原子的总自旋是电子自旋和核自旋之和,二者平行和反平行,构成原子的两个基态,等价于抽象的自旋体系,其动力学演化行为可用量子二能级原子描述。正是因为这个外层电子和原子的相互作用,可以通过光学的方法,对自旋基态进行初始化,这一过程称为光泵浦。通过超窄谱线的光吸收,可以测量自旋处于某一能级的几率,这一过程称为光探测,不仅如此,自旋还可以在共振微波场的作用下,发生动力学拉比振荡。通过测量拉比振荡的频率,可以获得微波场的信息。基于热原子体系,加上成像光学则可获得微波场的空间分布图像。
从实用的角度分析,该系统仍然有以下技术缺陷,因为装载原子气体的容器壁有一定厚度,现有玻璃泡制备技术做到100 μm量级有很大难度,使得原子“探针”不可能真正接近待测微波芯片近场;而且,该系统需要对气体泡加热和温控,增加了样品装载的难度;再者,气体的热扩散限制了图像的分辨率,目前这一系统的分辨为150 × 100 × 100 μm。
基于金刚石NV色心(Nitrogen Vacancy)的微波/毫米波成像系统,克服了上基于碱金属气体原子的微波成像技术的上述缺陷,既可以用于微波毫米波器件的表面局域电磁场分布表征和测量,又可以用于芯片电磁兼容检测、材料成分检测、微波近场无损探测和微波生物医学成像,具备广阔的应用空间。
金刚石中的NV色心是一种优秀的固态量子比特:原子尺寸、荧光稳定、在室温下具有较长的自旋相干寿命、自选态可以通过光学极化(Spin Initialization)和读出(Spin readout)、自旋态的操纵(Spin Manipulation)可以用脉冲微波实现。
————————————⭐⭐⭐————————————
上述主流的测量技术存在以下几个问题:1、软件仿真和数值计算方法在对微波毫米波的高频和高集成度芯片进行仿真的情况下,由于电磁场近场的复杂性,软件仿真不可避免的存在一定的失真,这种失真在高频和高复杂度的芯片设计时将十分严重,以致模拟结果和实际器件性能有很大偏差。2、采用传统的黑盒子网络分析仪对微波毫米波器件的散射参数进行测量仅能对器件的输入输出特征进行测量,说明不了信号在器件内部的局域特性,比如微波电流在复杂芯片上的分布。3、采用场强仪配合特制的高频天线对微波毫米波器件的表面进行扫描的方法,由于特制的高频天线本身的尺寸往往比较大,扫描的精度有限;此外特制的高频天线本身是金属制作的,天线本身对电磁场存在较大扰动,降低了测量的准确性。而采用高频近场磁场探头对微波毫米波器件的表面进行扫描的方法,由于高频探头本身是基于法拉第电磁感应原理而设计的,目前商用高频探头的尺寸最小也在毫米量级,相对于微波毫米波芯片的微米级布线,这类近场探头还是太大,不能提供表征芯片近场分布的有效信息。
针对微波毫米波芯片表面的近场电磁场成像的应用,现有的微波近场成像分析手段均不满足要求。而基于光学的光探测磁共振磁场探测方法可以做到很高的灵敏度和空间分辨率,并且对被测微波场没有扰动,所测量到的场强度不需要任何标定,可以作为一种电磁场的计量标准。
基于脉冲光探测磁共振的电磁场近场成像系统及方法将可以满足针对微波毫米波芯片表面的近场电磁场成像的场景的需求。这样的系统具备几个特点:(1)高分辨率,该系统采用光学成像的方法对金刚石的荧光进行成像,可以达到亚微米的成像分辨率;(2)基于脉冲光探测磁共振方法的磁场探测灵敏度可以达到纳特斯拉(nT/√Hz),这大大提高了磁场成像的灵敏度;(3)金刚石颗粒本身的化学成分为碳和杂质氮,这两种物质均对电磁场没有扰动,因此这一技术可以做到真正的非破坏电磁场成像。(4)该技术主要采用光学探测的方法,利用软件进行数值处理并成像,系统的结构简单。
研究总结
相关参考文献:
1.M. M.Dong, et al., “A fiber based diamond RF B-field sensor and characterization ofa small helical antenna”, Appl. Phys. Lett.113,131105 (2018).
2.B. Yanget al., “Non-Invasive Imaging Method of Microwave Near Field Based on SolidState Quantum Sensing”, IEEE trans. on Micr. Theo. and Tech. 66, 2276 (2018).
3.A.Horsley et al., “Imaging of Relaxation Times and Microwave Field Strength in aMicrofabricated Vapor Cell”, Phys. Rev. A 88,063407 (2013).
4.A.Horsley et al., “Widefield Microwave Imaging in Alkali Vapor Cells with sub-100um Resolution”, New J. Phys. 17,112002(2015).